On the use of evolutionary methods in metric theories of gravity IV.

István Rácz
istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu
Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

European Commission Horizon 2020
European Union funding
for Research \& Innovation

Institute of Theoretical Physics, University of Warsaw
Warsaw, 25 October 2018

Characteristic polynomials and directions

- consider now a First Order Symmetric Hyperbolic (FOSH) system HW (2) !

$$
\begin{equation*}
\mathcal{A}^{\alpha}(t, x) \partial_{\alpha} \mathbf{u}+\mathcal{B}(t, x, \mathbf{u})=0 \tag{*}
\end{equation*}
$$

- when the coefficients \mathcal{A}^{α} depend on the unknowns \mathbf{u}, all the definitions below can also be given but one has to be careful and one should refer to sections of fiber bundles (in fact a vector bundles) over the ambient manifold " (t, x, \mathbf{u}) ", this would require more structures to be used
- assume that ξ_{α} is a covector at a given point $p \in M$. the principal symbol of $\left(^{*}\right)$ at $\left(p, \xi_{\alpha}\right)$ is the matrix $\varsigma\left(p, \xi_{\alpha}\right)=\mathcal{A}^{\alpha} \xi_{\alpha} \quad$ (could be viewed as a linear map)
- suppose that \mathscr{H} is a hypersurface in a neighbourhood \mathcal{U} of $p \in M$, i.e. there exist a function $\chi: \mathcal{U} \rightarrow \mathbb{R}$ such that $\mathscr{H}=\left\{\chi=\right.$ const $\left.\& \partial_{\alpha} \chi \neq 0\right\}$
- \mathscr{H} is said to be nowhere characteristic for $\left(^{*}\right)$ if $\operatorname{det}\left(\varsigma\left(p, \partial_{\alpha} \chi\right)\right) \neq 0$ for any $p \in \mathscr{H}$, whereas \mathscr{H} is called to be a characteristic hypersurface, or simply a characteristic for $\left({ }^{*}\right)$, if $\operatorname{det}\left(\varsigma\left(p, \partial_{\alpha} \chi\right)\right)=0$ for any $p \in \mathscr{H}$
- if \mathscr{H} is nowhere characteristic for $\left(^{*}\right)$ then if initial data ${ }^{0} \mathbf{u}$ is given on \mathscr{H} a formal expansion of a "to be solution" u can be given taking formal ∂_{0}^{k}-derivatives $\left(^{*}\right)$ and solving the yielded equations for $\partial_{0}^{k} \mathbf{u}$ on \mathscr{H}
- if \mathscr{H} is characteristic, the initial data cannot be prescribed freely on \mathscr{H} $\operatorname{det}\left(\varsigma\left(p, \partial_{\alpha} \chi\right)\right)=0$ induces relations among the initial data on \mathscr{H} : inner equations on $\mathscr{H} ; \quad \xi_{\alpha}=\partial_{\alpha} \chi$ is then a characteristic direction

Assumptions on the topology of the ambient manifold

Foliations

- Assume: M is foliated by a one-parameter family of homologous hypersurfaces, i.e. $M \simeq \mathbb{R} \times \Sigma$, for some n-dimensional manifold Σ.
- known to hold for globally hyperbolic spacetimes (Lorentzian case)
- equivalent to the existence of a smooth function $\sigma: M \rightarrow \mathbb{R}$ with non-vanishing gradient $\nabla_{a} \sigma$ such that the $\sigma=$ const level surfaces $\Sigma_{\sigma}=\{\sigma\} \times \Sigma$ comprise the one-parameter foliation of M.

$$
n_{a} \sim \nabla_{a} \sigma \ldots \& \ldots g^{a b} \longrightarrow n^{a}=g^{a b} n_{b}
$$

σ^{a} is "time evolution vector field" if:

- the integral curves of σ^{a} meet the $\sigma=$ const level surfaces precisely once
- $\sigma^{e} \nabla_{e} \sigma=1$

$$
\sigma^{a}=\sigma_{\perp}^{a}+\sigma_{\|}^{a}=N n^{a}+N^{a}
$$

- where N and N^{a} denotes the lapse and shift of σ^{a} :

$$
N=\epsilon\left(\sigma^{e} n_{e}\right) \quad \text { and } \quad N^{a}=h^{a}{ }_{e} \sigma^{e}
$$

The main creatures:

- n^{a} the 'unit norm' vector field that is normal to the Σ_{σ} level surfaces

$$
n^{a} n_{a}=\epsilon
$$

- ϵ takes the value -1 or +1 for Lorentzian or Riemannian metric $g_{a b}$, resp.
- the projection operator

$$
h_{a}^{b}=\delta_{a}^{b}-\epsilon n_{a} n^{b}
$$

- the metric induced

$$
h_{a b}=h_{a}{ }^{e} h_{b}{ }^{f} g_{e f}=g_{a b}-\epsilon n_{a} n_{b}
$$

- the covariant derivative operator D_{a} associated with $h_{a b}: \forall \omega_{b}$ on Σ

$$
D_{a} \omega_{b}:=h_{a}{ }^{d} h_{b}{ }^{e} \nabla_{d} \omega_{e}
$$

- the extrinsic curvature on Σ (symmetric!)

$$
K_{a b}=h^{e}{ }_{a} \nabla_{e} n_{b}=\frac{1}{2} \mathscr{L}_{n} h_{a b}
$$

- acceleration

$$
\dot{n}_{a}=h^{f}{ }_{a} n^{e} \nabla_{e} n_{f}=n^{e} \nabla_{e} n_{a}
$$

Summary of the principal relations:

Gauss relation: ${ }^{(n)} R_{a b c}{ }^{e}=h_{a}{ }^{f} h_{b}{ }^{g} h_{c}{ }^{k} h_{j}{ }^{e} R_{f g k}{ }^{j}+\epsilon\left[K_{a c} K_{b}{ }^{e}-K_{b c} K_{a}{ }^{e}\right]$
Codazzi relation: $h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{g} n^{c} R_{a b c}{ }^{d}=-2 D_{[e} K_{f]}{ }^{g}$
The $3^{r d}$ relation: $h_{b}{ }^{e} h_{f}{ }^{d} n^{a} n^{c} R_{a e c}{ }^{f}=-\mathscr{L}_{n} K_{b}{ }^{d}-K_{b}{ }^{e} K_{e}{ }^{d}-\epsilon N^{-1} D_{b} D^{d} N$
Various projections of the Ricci tensor:

$$
\begin{gathered}
n^{e} n^{f} R_{e f}=\frac{1}{2} \epsilon\left[\left(R-{ }^{(n)} R\right)+\epsilon\left\{\left(K_{e}{ }^{e}\right)^{2}-K_{e f} K^{e f}\right\}\right] \\
h_{a}{ }^{e} n^{f} R_{e f}=D_{e} K_{a e}{ }^{e}-D_{a} K_{e}^{e} \\
h_{b}{ }^{e} h_{d}{ }^{f} R_{e f}={ }^{(n)} R_{b d}+\epsilon\left\{-\mathscr{L}_{n} K_{b d}-K_{b d} K_{e}^{e}+2 K_{b}^{e} K_{d e}-\epsilon N^{-1} D_{b} D_{d} N\right\}
\end{gathered}
$$

relation of the scalar curvatures:

$$
R={ }^{(n)} R+\epsilon\left\{-2 \mathscr{L}_{n}\left(K_{b d} h^{b d}\right)-\left(K_{e}{ }^{e}\right)^{2}-K_{e f} K^{e f}-2 \epsilon N^{-1} D^{e} D_{e} N\right\}
$$

no field equation had been used yet !!!

More exercises:

Any symmetric tensor field $P_{a b}$ can be decomposed

in terms of n^{a} and fields living on the $\sigma=$ const level surfaces as

$$
P_{a b}=\boldsymbol{\pi} n_{a} n_{b}+\left[n_{a} \mathbf{p}_{b}+n_{b} \mathbf{p}_{a}\right]+\mathbf{P}_{a b}
$$

where

$$
\boldsymbol{\pi}=n^{e} n^{f} P_{e f}, \quad \mathbf{p}_{a}=\epsilon h_{a}^{e} n^{f} P_{e f}, \quad \mathbf{P}_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} P_{e f}
$$

The projections of $\nabla^{a} P_{a b}$
$h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}$

$$
\begin{aligned}
\nabla_{e} P_{a b}= & \nabla_{e}\left[\boldsymbol{\pi} n_{a} n_{b}+\left[n_{a} \mathbf{p}_{b}+n_{b} \mathbf{p}_{a}\right]+\mathbf{P}_{a b}\right] \\
= & \left(\nabla_{e} \boldsymbol{\pi}\right) n_{a} n_{b}+\boldsymbol{\pi}\left(\nabla_{e} n_{a}\right) n_{b}+\boldsymbol{\pi} n_{a}\left(\nabla_{e} n_{b}\right) \\
& +\left(\nabla_{e} n_{a}\right) \mathbf{p}_{b}+n_{a}\left(\nabla_{e} \mathbf{p}_{b}\right)+\left(\nabla_{e} \mathbf{p}_{a}\right) n_{b}+\left(\nabla_{e} n_{b}\right) \mathbf{p}_{a}+\nabla_{e} \mathbf{P}_{a b}
\end{aligned}
$$

$$
\begin{aligned}
h_{f}{ }^{b}\left(\nabla^{a} P_{a b}\right)= & h_{f}{ }^{b}\left[h^{e a}+\epsilon n^{e} n^{a}\right] \nabla_{e} P_{a b}=\boldsymbol{\pi} \dot{n}_{f}+\left(K_{a}{ }^{a}\right) \mathbf{p}_{f} \\
& +h_{f}{ }^{b}\left[n^{a} \nabla_{a} \mathbf{p}_{b}+\mathbf{p}_{a}\left(h^{e a} \nabla_{e} n_{b}\right)\right]+D^{a} \mathbf{P}_{a f}-\epsilon\left(n^{e} \nabla_{e} n^{a}\right) \mathbf{P}_{a f} \\
= & \boldsymbol{\pi} \dot{n}_{f}+\left(K_{a}{ }^{a}\right) \mathbf{p}_{f}+h_{f}{ }^{b} \mathscr{L}_{n} \mathbf{p}_{b}+D^{a} \mathbf{P}_{a f}-\epsilon \dot{n}^{a} \mathbf{P}_{a f}
\end{aligned}
$$

$$
h_{f}{ }^{b}\left(\nabla^{a} P_{a b}\right)=\mathscr{L}_{n} \mathbf{p}_{f}+D^{a} \mathbf{P}_{a f}+\left[\boldsymbol{\pi} \dot{n}_{f}+\left(K_{a}{ }^{a}\right) \mathbf{p}_{f}-\epsilon \dot{n}^{a} \mathbf{P}_{a f}\right]
$$

More exercises:

The projection $n^{b}\left(\nabla^{a} P_{a b}\right)$

$$
h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}
$$

$$
\begin{aligned}
\nabla_{e} P_{a b}= & \left(\nabla_{e} \boldsymbol{\pi}\right) n_{a} n_{b}+\boldsymbol{\pi}\left(\nabla_{e} n_{a}\right) n_{b}+\boldsymbol{\pi} n_{a}\left(\nabla_{e} n_{b}\right) \\
& +\left(\nabla_{e} n_{a}\right) \mathbf{p}_{b}+n_{a}\left(\nabla_{e} \mathbf{p}_{b}\right)+\left(\nabla_{e} \mathbf{p}_{a}\right) n_{b}+\left(\nabla_{e} n_{b}\right) \mathbf{p}_{a}+\nabla_{e} \mathbf{P}_{a b}
\end{aligned}
$$

$$
\begin{aligned}
n^{b}\left(\nabla^{a} P_{a b}\right)= & n^{b}\left[h^{e a}+\epsilon n^{e} n^{a}\right] \nabla_{e} P_{a b}=\epsilon \mathscr{L}_{n} \boldsymbol{\pi}+\epsilon \boldsymbol{\pi}\left(K_{e}^{e}\right)+\left(n^{a} \nabla_{a} \mathbf{p}_{b}\right) n^{b} \\
& +\epsilon\left[h^{e a}+\epsilon n^{e} n^{a}\right] \nabla_{e} \mathbf{p}_{a}-\mathbf{P}_{a b}\left[h^{e a}+\epsilon n^{e} n^{a}\right]\left(\nabla_{e} n^{b}\right) \\
= & \epsilon \mathscr{L}_{n} \boldsymbol{\pi}+\epsilon \boldsymbol{\pi}\left(K_{e}^{e}\right)-\dot{n}^{a} \mathbf{p}_{a}+\epsilon\left[D^{a} \mathbf{p}_{a}-\epsilon \dot{n}^{a} \mathbf{p}_{a}\right] \\
& -\mathbf{P}_{a b} h^{e a}\left[K_{e}^{b}+\epsilon n_{e} \dot{n}^{b}\right] \\
= & \epsilon\left[\mathscr{L}_{n} \boldsymbol{\pi}+\boldsymbol{\pi}\left(K_{e}^{e}\right)+D^{a} \mathbf{p}_{a}\right]-2 \mathbf{p}_{a} \dot{n}^{a}-\mathbf{P}_{a b} K^{a b}
\end{aligned}
$$

$$
\epsilon n^{b}\left(\nabla^{a} P_{a b}\right)=\mathscr{L}_{n} \boldsymbol{\pi}+D^{e} \mathbf{p}_{e}+\left[\boldsymbol{\pi}\left(K_{e}^{e}\right)-\epsilon \mathbf{P}_{e f} K^{e f}-2 \epsilon \mathbf{p}_{e} \dot{n}^{e}\right]
$$

Simple projections $n^{a}\left(\nabla_{a} P_{b}{ }^{b}\right) \& h_{e}{ }^{a}\left(\nabla_{a} P_{b}{ }^{b}\right)$

$$
h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}
$$

as $P_{b}{ }^{b}=\epsilon \boldsymbol{\pi}+\mathbf{P}_{b}{ }^{b}$

$$
\begin{aligned}
n^{a}\left(\nabla_{a} P_{b}{ }^{b}\right) & =\epsilon \mathscr{L}_{n} \boldsymbol{\pi}+\mathscr{L}_{n} \mathbf{P}_{b}{ }^{b} \\
h_{e}{ }^{a}\left(\nabla_{a} P_{b}{ }^{b}\right) & =\epsilon D_{e} \boldsymbol{\pi}+D_{e} \mathbf{P}_{b}{ }^{b}
\end{aligned}
$$

Projections of divergences:

The projections of $\nabla^{a} P_{a b}$

$$
h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}
$$

$$
\epsilon n^{b}\left(\nabla^{a} P_{a b}\right)=\mathscr{L}_{n} \boldsymbol{\pi}+D^{e} \mathbf{p}_{e}+\left[\boldsymbol{\pi}\left(K_{e}^{e}\right)-\epsilon \mathbf{P}_{e f} K^{e f}-2 \epsilon \mathbf{p}_{e} \dot{n}^{e}\right]
$$

$$
h_{f}{ }^{b}\left(\nabla^{a} P_{a b}\right)=\mathscr{L}_{n} \mathbf{p}_{f}+D^{a} \mathbf{P}_{a f}+\left[\boldsymbol{\pi} \dot{n}_{f}+\left(K_{a}{ }^{a}\right) \mathbf{p}_{f}-\epsilon \dot{n}^{a} \mathbf{P}_{a f}\right]
$$

- assume $\nabla^{a} P_{a b}=0$, and that $\dot{n}_{a}=0, K_{e}^{e}=0, \mathbf{P}_{e f} K^{e f}=0$
- then the above relations reduce to

$$
\begin{aligned}
\mathscr{L}_{n} \boldsymbol{\pi}+D^{e} \mathbf{p}_{e} & =0 \\
\mathscr{L}_{n} \mathbf{p}_{b}+D^{a} \mathbf{P}_{a b} & =0
\end{aligned}
$$

- though $P_{a b}$ is arbitrary the above relations look very much like the balance relation in fluid dynamics $\partial_{t} \rho+\partial_{\bar{\alpha}}\left(\rho \mathrm{v}^{\bar{\alpha}}\right)=0$ and the Euler equation

$$
\rho\left[\partial_{t} v^{\bar{\alpha}}+\mathrm{v}^{\bar{\varepsilon}} \partial_{\bar{\varepsilon}} \mathrm{v}^{\bar{\alpha}}\right]=-h^{\bar{\alpha} \bar{\varepsilon}} \partial_{\bar{\varepsilon}} P
$$

The program for the present lecture:

The main message:

some of the arguments and techniques developed originally and applied so far exclusively only in the Lorentzian case do also apply to Riemannian spaces

Plans and Aims:

The propagation of the constraints

- Einsteinian spaces: $\left(M, g_{a b}\right)$
- Bianchi identity
- no gauge condition
... arbitrary choice of foliations \& "evolutionary" vector field

Reference:

- I. Rácz: Is the Bianchi identity always hyperbolic?, CQG 31155004 (2014)

The considered Einsteinian spaces:

- The ambient spaces: $\left(M, g_{a b}\right)$
- M : n+1-dimensional, smooth, paracompact, connected, orientable manifold
- $g_{a b}:$ smooth Lorentzian $(-,+, \ldots,+)$ or Riemannian $(+,+, \ldots,+)$ metric
- Einstein's equations:

$$
G_{a b}-\mathscr{G}_{a b}=0 \quad \text { with source term: } \quad \nabla^{a} \mathscr{G}_{a b}=0
$$

- in a more familiar setup: Einstein's equations with cosmological constant Λ

$$
\left[R_{a b}-\frac{1}{2} g_{a b} R\right]+\Lambda g_{a b}=8 \pi T_{a b}
$$

with matter fields satisfying their Euler-Lagrange equations
-

$$
\mathscr{G}_{a b}=8 \pi T_{a b}-\Lambda g_{a b}
$$

Decompositions of various fields:

- the metric

$$
g_{a b}=\epsilon n_{a} n_{b}+h_{a b}
$$

- the "source term"

$$
\mathscr{G}_{a b}=n_{a} n_{b} \mathfrak{e}+\left[n_{a} \mathfrak{p}_{b}+n_{b} \mathfrak{p}_{a}\right]+\mathfrak{S}_{a b}
$$

where the energy, momentum and stress densities are defined as

$$
\mathfrak{e}=n^{e} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{p}_{a}=\epsilon h^{e}{ }_{a} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{S}_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} \mathscr{G}_{e f}
$$

- projections of the divergence $\nabla^{a} \mathscr{G}_{a b}$

$$
\begin{aligned}
\epsilon n^{b}\left(\nabla^{a} \mathscr{G}_{a b}\right) & =\mathscr{L}_{n} \mathfrak{e}+D^{e} \mathfrak{p}_{e}+\left[\mathfrak{e}\left(K_{e}{ }^{e}\right)-\epsilon \mathfrak{S}_{e f} K^{e f}-2 \epsilon \mathfrak{p}_{e} \dot{n}^{e}\right] \\
h_{f}{ }^{b}\left(\nabla^{a} \mathscr{G}_{a b}\right) & =\mathscr{L}_{n} \mathfrak{p}_{f}+D^{a} \mathfrak{S}_{a f}+\left[\mathfrak{e} \dot{n}_{f}+\left(K_{a}{ }^{a}\right) \mathfrak{p}_{f}-\epsilon \dot{n}^{a} \mathscr{G}_{a f}\right]
\end{aligned}
$$

- as $\nabla^{a} \mathscr{G}_{a b}=0$, assuming that $\dot{n}_{a}=0, K_{e}^{e}=0, \mathfrak{S}_{e f} K^{e f}=0$

$$
\begin{aligned}
\mathscr{L}_{n} \mathfrak{e}+D^{e} \mathfrak{p}_{e} & =0 \\
\mathscr{L}_{n} \mathfrak{p}_{f}+D^{a} \mathfrak{S}_{a f} & =0
\end{aligned}
$$

Decompositions of various fields:

- Einstein's equations:

$$
G_{a b}-\mathscr{G}_{a b}=0 \quad \text { with source term: } \quad \nabla^{a} \mathscr{G}_{a b}=0
$$

- r.h.s. of Einstein's equation: $E_{a b}=G_{a b}-\mathscr{G}_{a b}$

$$
E_{a b}=n_{a} n_{b} E^{(\mathcal{H})}+\left[n_{a} E_{b}^{(\mathcal{M})}+n_{b} E_{a}^{(\mathcal{M})}\right]+\left(E_{a b}^{(\mathcal{V} \mathcal{O L})}+h_{a b} E^{(\mathcal{H})}\right)
$$

$$
E^{(\mathcal{H})}=n^{e} n^{f} E_{e f}, \quad E_{a}^{(\mathcal{M})}=\epsilon h^{e}{ }_{a} n^{f} E_{e f}, \quad E_{a b}^{(\mathcal{E V O L})}=h_{a}^{e} h_{b}^{f} E_{e f}-h_{a b} E^{(\mathcal{H}}
$$

The decomposition of the covariant divergence $\nabla^{a} E_{a b}=0$ of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$:

$$
\begin{gathered}
\mathscr{L}_{n} E^{(\mathcal{H})}+D^{e} E_{e}^{(\mathcal{M})}+\left[E^{(\mathcal{H})}\left(K^{e}{ }_{e}\right)-2 \epsilon\left(\dot{n}^{e} E_{e}^{(\mathcal{M})}\right)\right. \\
\left.-\epsilon K^{a e}\left(E_{a e}^{(\mathcal{E V O L})}+h_{a e} E^{(\mathcal{H})}\right)\right]=0 \\
\mathscr{L}_{n} E_{b}^{(\mathcal{M})}+D^{a}\left(E_{a b}^{(\mathcal{E V O L})}+h_{a b} E^{(\mathcal{H})}\right)+\left[E^{(\mathcal{H})} \dot{n}_{b}+\left(K^{e}{ }_{e}\right) E_{b}^{(\mathcal{M})}\right. \\
\left.-\epsilon\left(E_{a b}^{(\mathcal{E V O L})}+h_{a b} E^{(\mathcal{H})}\right) \dot{n}^{a}\right]=0
\end{gathered}
$$

The decomposition of the covariant divergence $\nabla^{a} E_{a b}=0$ of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$:

$$
\begin{gathered}
\mathscr{L}_{n} E^{(\mathcal{H})}+D^{e} E_{e}^{(\mathcal{M})}+\left[E^{(\mathcal{H})}\left(K_{e}^{e}\right)-2 \epsilon\left(\dot{n}^{e} E_{e}^{(\mathcal{M})}\right)\right. \\
\left.-\epsilon K^{a e}\left(E_{a e}^{(\mathcal{V O \mathcal { L })}}+h_{a e} E^{(\mathcal{H})}\right)\right]=0 \\
\mathscr{L}_{n} E_{b}^{(\mathcal{M})}+D^{a}\left(E_{a b}^{(\mathcal{E} \mathcal{V O L})}+h_{a b} E^{(\mathcal{H})}\right)+\left[E^{(\mathcal{H})} \dot{n}_{b}+\left(K_{e}^{e}\right) E_{b}^{(\mathcal{M})}\right. \\
\left.-\epsilon\left(E_{a b}^{(\mathcal{V O L})}+h_{a b} E^{(\mathcal{H})}\right) \dot{n}^{a}\right]=0
\end{gathered}
$$

1st order symmetric hyperbolic system: linear and homogeneous in $\left(E^{(\mathcal{H})}, E_{i}^{(\mathcal{M})}\right)^{T}$:

- $N \times$ " (1) " and $N h^{i j} \times "(2)$ " in local coordinates ($\sigma, x^{1}, x^{2}, \ldots, x^{n}$) adopted to the vector field $\sigma^{a}=N n^{a}+N^{a}: \quad \sigma^{e} \nabla_{e} \sigma=1$ and the foliation $\left\{\Sigma_{\sigma}\right\}$, read as

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & h^{i j}
\end{array}\right) \partial_{\sigma}+\left(\begin{array}{cc}
-N^{k} & N h^{i k} \\
N h^{j k} & -N^{k} h^{i j}
\end{array}\right) \partial_{k}\right\}\binom{E^{(\mathcal{H})}}{E_{i}^{(\mathcal{M})}}=\binom{\mathscr{E}}{\mathscr{E}^{j}}
$$

where the source terms \mathscr{E} and \mathscr{E}^{j} are linear and homogeneous in $E^{(\mathcal{H})}$ and $E_{i}^{(\mathcal{M})}$

$$
\mathcal{A}^{\mu} \partial_{\mu} \mathbf{u}+\mathcal{B} \mathbf{u}=0 \quad \text { with } \quad \mathbf{u}=\left(E^{(\mathcal{H})}, E_{i}^{(\mathcal{M})}\right)^{T}
$$

HW (+): determine the characteristic directions for this equation.

The main result:

Theorem

Let $\left(M, g_{a b}\right)$ be an Einsteinian space as specified and assume that the metric $h_{a b}$ induced on the $\sigma=$ const level surfaces is Riemannian. Then, regardless whether $g_{a b}$ is of Lorentzian or Euclidean signature, any solution to the reduced equations $E_{a b}^{(\mathcal{E V O L})}=0$ is also a solution to the full set of field equations $G_{a b}-\mathscr{G}_{a b}=0$ provided that the constraint expressions $E^{(\mathcal{H})}$ and $E_{a}^{(\mathcal{M})}$ vanish on one of the $\sigma=$ const level surfaces.

- no gauge condition was used anywhere in the above analyze !
- it applies regardless of the choice of the foliation, Σ_{σ}, of M and for any choice of the evolution vector field, $\sigma^{a}\left(N, N^{a}\right)$.

The decomposition of the covariant divergence $\nabla^{a} E_{a b}=0$ of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$:

$$
\begin{aligned}
\mathscr{L}_{n} E^{(\mathcal{H})}+D^{e} E_{e}^{(\mathcal{M})}+ & {\left[E^{(\mathcal{H})}\left(K_{e}^{e}\right)-2 \epsilon\left(\dot{n}^{e} E_{e}^{(\mathcal{M})}\right)\right.} \\
& \left.-\epsilon K^{a e}\left(E_{a e}^{(\mathcal{E V O L})}+h_{a e} E^{(\mathcal{H})}\right)\right]=0
\end{aligned}
$$

$\mathscr{L}_{n} E_{b}^{(\mathcal{M})}+D^{a}\left(E_{a b}^{(\mathcal{E V O L})}+h_{a b} E^{(\mathcal{H})}\right)+\left[E^{(\mathcal{H})} \dot{n}_{b}+\left(K_{e}^{e}\right) E_{b}^{(\mathcal{M})}\right.$

$$
\left.-\epsilon\left(E_{a b}^{(\mathcal{E} O \mathcal{L})}+h_{a b} E^{(\mathcal{H})}\right) \dot{n}^{a}\right]=0
$$

What is if the constraints hold on each $\sigma=$ const hypersurface?

- $E^{(\mathcal{H})}=0$ and $E_{a}^{(\mathcal{M})}=0$

$$
\begin{aligned}
K^{a e} E_{a e}^{(\mathcal{E V O L})} & =0 \\
D^{a} E_{a b}^{(\mathcal{E V O L})}-\epsilon E_{a b}^{(\mathcal{E V O L})} \dot{n}^{a} & =0
\end{aligned}
$$

- homework HW (3):
- show that the constraints holds for any foliations of the ambient manifold then the evolution equations follow

The explicit forms I.:

using the projections of the Ricci tensor:

$$
n^{e} n^{f} R_{e f}=\frac{1}{2} \epsilon\left[\left(R-{ }^{(n)} R\right)+\epsilon\left\{\left(K_{e}{ }^{e}\right)^{2}-K_{e f} K^{e f}\right\}\right]
$$

$$
h_{a}{ }^{e} n^{f} R_{e f}=D_{e} K_{a e}{ }^{e}-D_{a} K_{e}{ }^{e}
$$

$$
h_{b}{ }^{e} h_{d}{ }^{f} R_{e f}={ }^{(n)} R_{b d}+\epsilon\left\{-\mathscr{L}_{n} K_{b d}-K_{b d} K_{e}^{e}+2 K_{b}^{e} K_{d e}-\epsilon N^{-1} D_{b} D_{d} N\right\}
$$

along with the relation of the scalar curvatures:

$$
R={ }^{(n)} R+\epsilon\left\{-2 \mathscr{L}_{n}\left(K_{e}^{e}\right)-\left(K_{e}{ }^{e}\right)^{2}-K_{e f} K^{e f}-2 \epsilon N^{-1} D^{e} D_{e} N\right\}
$$

and that of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$, the following explicit forms can be verified:

The explicit forms II.:

$$
\begin{aligned}
E^{(\mathcal{H})}= & n^{e} n^{f} E_{e f}=\frac{1}{2}\left\{-\epsilon{ }^{(n)} R+\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \mathfrak{e}\right\}, \\
E_{a}^{(\mathcal{M})}= & \epsilon h^{e}{ }_{a} n^{f} E_{e f}=\epsilon\left[D_{e} K^{e}{ }_{a}-D_{a} K^{e}{ }_{e}-\epsilon \mathfrak{p}_{a}\right] \\
E_{a b}^{(\mathcal{V O L} \mathcal{L})}= & { }^{(n)} R_{a b}+\epsilon\left\{-\mathscr{L}_{n} K_{a b}-\left(K^{e}{ }_{e}\right) K_{a b}+2 K_{a e} K^{e}{ }_{b}-\epsilon N^{-1} D_{a} D_{b} N\right\} \\
& -\left[\mathfrak{S}_{a b}-\mathfrak{e} h_{a b}\right]-\frac{1}{2} h_{a b}\left\{(1-\epsilon)^{(n)} R-2 \epsilon \mathscr{L}_{n}\left(K^{e}{ }_{e}\right)\right. \\
& \left.\quad+(1-\epsilon)\left(K^{e}{ }_{e}\right)^{2}-(1+\epsilon) K_{e f} K^{e f}-2 N^{-1} D^{e} D_{e} N\right\}
\end{aligned}
$$

where

$$
\mathfrak{e}=n^{e} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{p}_{a}=\epsilon h^{e}{ }_{a} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{S}_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} \mathscr{G}_{e f}
$$

The explicit forms II.:

The reduced evolutionary expression $E_{a b}^{(\mathcal{E V O \mathcal { L }})}$ looks pretty complicated. Therefore, in certain cases (in particular, whenever $\epsilon=-1$) it is rewarding to introduce

$$
\widetilde{E}_{a b}^{(\mathcal{E V O L})}=E_{a b}^{(\mathcal{E} \mathcal{O L})}-\frac{1}{n-1} h_{a b}\left(E_{e f}^{(\mathcal{E} \mathcal{V O L})} h^{e f}\right)
$$

It can also be seen HW (4) that $\quad \widetilde{E}_{a b}^{(\mathcal{E V O L})}=0 \quad \Leftrightarrow \quad E_{a b}^{(\mathcal{E V O L})}=0 \quad$ and

$$
\widetilde{E}_{a b}^{(\mathcal{E V O L})}=h^{e}{ }_{a} h^{f}{ }_{b}\left[R_{a b}-\left(\mathscr{G}_{a b}-\frac{1}{n-1} g_{a b}\left[\mathscr{G}_{e f} g^{e f}\right]\right)\right]+\frac{1+\epsilon}{n-1} h_{a b} E^{(\mathcal{H})}
$$

In virtue of the above relations we have

$$
\begin{aligned}
\widetilde{E}_{a b}^{(\mathcal{E V O L})}={ }^{(n)} R_{a b} & +\epsilon\left\{-\mathscr{L}_{n} K_{a b}-\left(K_{e}^{e}\right) K_{a b}+2 K_{a e} K^{e}{ }_{b}-\epsilon N^{-1} D_{a} D_{b} N\right\} \\
& -\left(\mathfrak{S}_{a b}-\frac{1}{n-1} h_{a b}\left[\mathfrak{S}_{e f} h^{e f}+\epsilon \mathfrak{e}\right]\right) \\
& +\frac{1+\epsilon}{2(n-1)} h_{a b}\left\{-\epsilon^{(n)} R+\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \mathfrak{e}\right\}
\end{aligned}
$$

That is all for now...

