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Characteristic polynomials and directions

@ consider now a First Order Symmetric Hyperbolic (FOSH) system HW (2)!

A% (t, z) Dpu + B(t,z,u) =0 (%)

@ when the coefficients A% depend on the unknowns u, all the definitions below can also be given but one has to be careful and one should refer

to sections of fiber bundles (in fact a vector bundles) over the ambient manifold “(¢, =, u)", this would require more structures to be used

@ assume that &, is a covector at a given point p € M. the principal symbol
Of (*) at (p, ga) iS the matriX §(p, ga) = AO{ ga (could be viewed as a linear map)

@ suppose that 7 is a hypersurface in a neighbourhood U of p € M, i.e. there
exist a function x : U — R such that 5 = {x = const & 0,x # 0}
e % is said to be nowhere characteristic for (*) if det(s(p, OaX)) # 0 for any
p € F, whereas S is called to be a characteristic hypersurface, or simply
a characteristic for (*), if det(s(p, dax)) = 0 for any p € 7
o if 2 is nowhere characteristic for (*) then if initial data “u is given on
7 a formal expansion of a “to be solution” u can be given taking formal
OF-derivatives (*) and solving the yielded equations for 9fu on %
o if A is characteristic, the initial data cannot be prescribed freely on 7
det(s(p, 0o x)) = 0 induces relations among the initial data on 7% :
inner equations on JZ; £, = 0, is then a characteristic direction
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Assumptions on the topology of the ambient manifold

Foliations

@ Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M >~ R x X, for some n-dimensional manifold X.

e known to hold for globally hyperbolic spacetimes (Lorentzian case)

o equivalent to the existence of a smooth function o : M — R with
non-vanishing gradient Vo such that the o = const level surfaces
Yo = {0} x X comprise the one-parameter foliation of M.

° nawvaa...&...gab — n*=g"np
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o is “time evolution vector field” if:

@ the integral curves of 0® meet the o = const level surfaces precisely once

o [ =1]

U“zaj’_+0ﬁ:Nn“+Na

o where N and N® denotes the lapse and shift of o%:

‘Nze(aene) and N®=h%o°

Istvdn Racz (University of Warsaw & Wigner RCP) UW-ITP, 25 October 2018



The main creatures:

@ n% the ‘unit norm’ vector field that is normal to the X, level surfaces

o ¢ takes the value —1 or +1 for Lorentzian or Riemannian metric gq», resp.

o the projection operator

‘ ha? = 8,0 — engn® ‘

@ the metric induced

‘ hab = haehbf Gef = Gab — €ENgTp ‘

@ the covariant derivative operator associated with hqp: Vw, on X

‘ Dawb = hadhbevd We

o the extrinsic curvature on ¥ (symmetric!)

Kab = heavenb = %gnhab

@ acceleration ‘ Ng = hfanevenf =nVeng
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Summary of the principal relations:

(n)

Rapc® = hafhbghckhje ngkj 4 € [I(ac-[{be - Kchae]

Gauss relation:

Codazzi relation: | h.®h*hq? n°Rap.? = —2Dj K 4)?

The 37 relation: ‘hbehfdnanc Rooed = — 2Ky — Ky¢ K, — e N"1D, DN

Various projections of the Ricci tensor:

nend Rop = Le [(R — "R) + e{ (K.°)? — Koy Ko }}

oI Rep = D Koo® — Dy Ko

hs®ha’ Reg = “Rod + € {—LKpq — KpakKo® + 2Ky Ky — e N"1DyDyN'}

relation of the scalar curvatures:

R+ € {—2.%,(Kpgh®) — (K.)? — Koy Ke —2¢ N"1D°D,N}

(n
R =

no field equation had been used yet !!!
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More exercises:

Any symmetric tensor field P,; can be decomposed

in terms of n® and fields living on the o = const level surfaces as

Pap = 7 ngny, + [na Py + b Pal + Pap

where ‘71' = nen’ FPer, pa= eheé n’ FPer, Pop = he,hty P

The projections of V2P,

VP, = Ve[mngny + [na Po + 16 Pa] + Pab |
= (Vem)ngnp + 7 (Veng)np + wng(Veng)
+ (ve na) Py + na(ve Pb) + (Ve pa) np + (ve nb) Po + ve Pab

hfb(V“Pab) = hfb [hm ¢ E’I’Lena]vePab = 7r7'1f + (Kaa) Py
+ hfb Voo + Pa(h“Veny)] + DPoy — e (n°Ven®) Pyy
= 7T’f1f 4 (Kaa) Py + hfb Py + DaPaf = G’fLaPaf

‘ hy?(VOPa) = £y + D*Pay + [m iy + (Ko*) pyr — €1Pay]
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More exercises:

The projection n®(V%P,y)
VePap = (Vem) nanp + m (Ve ng)np + mng (Ve np)
+ (Vena) Po + 1a(Ve Pp) + (Ve Pa) b + (Ve nb) Pa + Ve Pap

nb(VaPab) =nb [ + enn® | VP = e Zym + em(K.°) + (n°Vpo) n?
+e[h® +enn®)Vepa — Pap[h®® + enn®] (Ve nb)
=eZym+em(K.) —npy+e[D'py — en’pa]
— Py b [ K.+ encnl)
= e[ Ly + w(K.°) + Dpy] — 2pan® — Py K

‘ en®(VePy) = Zym + D°p + [m(K.°) — ePefKef — 2€epen®]

Simple projections n%(V,Py?) & he®(V,Py?) Wl = 0,0 — engn?
as Pl =em + P,

n (Vo Pl) = e Lo + L, Py’
he®(VoPyb) = € Do + D Py°
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Projections of divergences:

The projections of V*P,,

‘ enb(VePy) = Lpm + Dpe + [m(KE) — ePe K — 2epen®]

h2(V9Pw) = % by + DPus + [mivy + (Ku®) By — €t®Poyl |

@ assume , and that |n, =0, K¢ =0, PefKef =0

e then the above relations reduce to

<+ Dp. =0
gn Py + DaPab =0

e though P, is arbitrary the above relations look very much like the
balance relation in fluid dynamics |9;p + 9a(pv®) =0

and the Euler equation | p [0,v® 4+ v¢O-v®] = —h**0-P
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The program for the present lecture:

The main message:

some of the arguments and techniques developed originally and
applied so far exclusively only in the Lorentzian case do also apply to
Riemannian spaces

Plans and Aims:
The propagation of the constraints

o Einsteinian spaces: (M, gap)
e Bianchi identity
e no gauge condition
. arbitrary choice of foliations & “evolutionary” vector field

Reference:

o |. Racz: Is the Bianchi identity always hyperbolic?, CQG 31 155004 (2014)
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The considered Einsteinian spaces:

@ The ambient spaces: (M, gup)

e M : n + 1-dimensional, smooth, paracompact, connected, orientable manifold
® gab: smooth Lorentzian_ | +) metric

..........

o Einstein’s equations:

G — % =0 with source term: | V%%, =0

e in a more familiar setup: Einstein’s equations with cosmological constant A

[Rab - %gab R} ar Agab = 81 Tap

with matter fields satisfying their Euler-Lagrange equations

gab = 8w Tab - Agab
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Decompositions of various fields:

@ the metric

‘ Jab = ENgNp + hab ‘

@ the “source term”
Gap = NaNp € + [Ng Py + 1 Pa] + Sap

where the energy, momentum and stress densities are defined as

¢ = nenf gefa Pa = 6heanf gefy Gup = heahfb gef

@ projections of the divergence

en® (V%) = Lpe + Dp, + [e(K.°) — eGefKef —2epn®]
hfb(V“%b) =%, pr+ DaGaf aF [ehf =F (Ka“)pf = Eﬁagaf]

@ as , assuming that ‘ha =0, K¢ =0, GefKef = 0‘

Z,e+ D, =0
fnpf +D%Gur =0
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Decompositions of various fields:

o Einstein’s equations:

G —%u =0 with source term: | V%%, =0
@ r.h.s. of Einstein’s equation: E., = Gap — Yup
30 (M) (M) (evor) (30
Ew=ngwE " +[n.,E  +npE, |+ (E, +hapE )
E™ =nenf By, ESY =eheonf Eoy, E.y " =h®uhfy Eep — hay B

The decomposition of the covariant divergence V* E, = 0 of Egp = Gap — Gup:

(#H)

(M)

(M)

R o

2, E” + DB +|E

(evocr)

+ Da(Eab

+habE

(H)

—eK*(E
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The decomposition of the covariant divergence V* E, = 0 of Egp = Gap — Yap:

2, E" + DB + BT (K°) - 2¢ (¢ ES)
— ek (B " 4+ hae )] =0
2B +DYE T 4 hay BT+ (BTt + (KC0) By
—e(By Y + hap BT Y001 =0

(H) (M)
)7

1st order symmetric hyperbolic system: linear and homogeneous in (E" ', E;

@ N x”(1)” and Nh" x ”(2)” in local coordinates (o, z",z?,...,z") adopted to the
vector field ’a“ =Nn*"+N* 0°Veo=1 ‘ and the foliation {¥}, read as

10 _Nk Nk E™ &
0 nii )%t npat —nrpi ) O g g | = e
(M)

i . . ()
where the source terms & and &7 are linear and homogeneous in E° and E;
°

(#H) (M)

’A”@Mu-i-Bu:O‘ with u=(E ,E )"

HW (+): determine the characteristic directions for this equation.
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The main result:

Theorem

Let (M, gq) be an Einsteinian space as specified and assume that the
metric hy, induced on the o = const level surfaces is Riemannian.
Then, regardless whether ¢,, is of Lorentzian or Euclidean

. . . (Evor) .
signature, any solution to the reduced equations £, = 0 is also a
solution to the full set of field equations G, — %,, = 0 provided that
the constraint expressions E'" and E;M vanish on one of the
o = const level surfaces.

e no gauge condition was used anywhere in the above analyze !

o it applies regardless of the choice of the foliation, , of M

and for any choice of the evolution vector field, o (N, N%) |
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The decomposition of the covariant divergence V@ E,, = 0 of Egp = Gy — Yap:

2. B + DB + [ (K°) -2t )
e K% (B 4 hee E™)] =0
LB+ DYEST 4 hay BT) + [E( fw + (K2) By
—e(BS + hay BT YR =0

What is if the constraints hold on each o = const hypersurface?

o E™ =0|and [ES =0

(evocr)
K*“FE,, =0
(Evocr) (5\;05)
DaE — eEab n =0

@ homework HW (3):

e show that the constraints holds for any foliations of the ambient manifold
then the evolution equations follow
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The explicit forms I.:

using the projections of the Ricci tensor:

nend Rop=1e [(R — "R) + e{ (K.°)? — Koy Ko }}

hatnd Rep = De Koo — Do Ko

hbehdeef = (n)Rbd aF @ {_gnKbd — KpgKe¢ +2Kp° K ge — GN_lDdeN}

along with the relation of the scalar curvatures:

R="R+e{-2L,(K¢) — (K.*)’ — K.;K*f —2¢ N"'D°D.N}

and that of | E.p = Gap — Yup |, the following explicit forms can be verified:
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The explicit forms Il.:

1 n
B —nnf Bop = 5 {=e "R+ (K°0)" = KoK — 2},
E," = eh®nf Eep = €[ DKy — DaK®e — €94
By " = “Rup + € {~LuKup — (K°)Kap + 2 Koo K% — e N™' D,DyN}
1 n
~ [Sas — ¢has] = 5 hat {(1 — ) "R—2¢.2,(K",)
+(1 =€) (K%)° = (1+€) KofK* =2 N~ D*D,N }
where
’e = nenf gefv Pa = 6heanf gefy Suwp = heahfb gef
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The explicit forms Il.:

. . (evor) .
The reduced evolutionary expression E looks pretty complicated. Therefore,
in certain cases (in particular, whenever ¢ = —1) it is rewarding to introduce

~(evor) L (£vOr) 1 Evor), ¢
Eab _Eab - ﬁhab (Eef h

It can also be seen HW (4) that E;ZVOL) =0 « E;ivm) =0| and

~(Evor) . 1 . 1+e¢ (H)
Eab =h ahfb [Rab_(gab_n_lgab[gefgf]>:| +n_1habE

In virtue of the above relations we have

~(EvocL) (n)

Ey = Ra+e{-LKup— (K)Kap+2KaeK% —eN ' D,D,N}

1
— - ef
(6ab n_lhab[Gefh +ee]>

1+e€ (n) . .
+mhub{7€ R+(K e)Q*Kefo72e}
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That is all for now... J
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